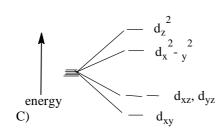
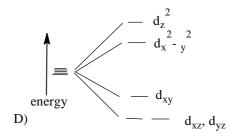

17804 120 MINUTES


1.	The increasing order of electron affinity values among the elements C, N, O & F is										
	A)	N < C < O < F			•		< O < F	, ,			
	C)	N < O < C < F			D)		< N < F				
	C)	NCOCCI			D)	C <o< td=""><td>\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \</td><td></td><td></td></o<>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
2.	Match	the shapes of the	he follo	wing m	olecules	s:					
		Molecules			Shape						
	a)	$\overline{\mathrm{BF_3}}$		i)	square pyramid						
	b)			ii)	triangular planar						
	c)			iii)	_	-	iai				
	,										
	d)	XeO_4		iv)	trigonal bipyramid regular pentagon						
				v)	regulai	pentag	On				
	A)	a-ii, b- v, c- i, d- iv B) a-iii, b- iv, c- i, d- ii									
	C)	a-ii, b- i, c- iv,			D)		v, c- i , d- iii				
	-/				- /	, -	,, ,				
3.	Among the following inter halogen ions which are having linear structure?							?			
	ClF_2^-	ClF_2^+, IF_2^-, Bri	$F_{2,}^{+} ICl_{2}^{-}$	-							
	A)	ClF_2^+, IF_2^-, Bi	rF_2^+		B)	ClF_2^- .	IF_2^-, ICl_2^-				
		$ClF_{2}^{+}, IF_{2}^{-}, IC$	-,		D)	All of	,				
	C)	cir_2, ir_2, ic	· ¹ 2,		D)	All Ol	iliese				
4.	Which	among the foll	owing 1	horanes	has ara	chno bi	itterfly structur	e?			
••	A)	B_5H_9	B)	$B_6H_6^{2-}$		C)	$B_{10}H_{14}$	D)	B_4H_{10}		
	11)	Daring	D)	D ₀ 11 ₀		<i>C)</i>	D 10 11 14	D)	D 41110		
5.	Among	the first transi	ition ser	ies, wh	ich meta	als shov	v maximum nu	mber of	oxidation states?		
	A)	V, Cr	B)	Cr, Mr		C)	Fe, Co	D)	Mn, Co		
	11)	v , C1	D)	CI, IVII	1	<i>C)</i>	10,00	D)	wiii, co		
6.	Which	among the foll	owing i	ons hav	e a stru	cture w	ith two tetrahe	dra joine	ed by sharing an		
		n atom at one ve						3	, .		
		$Cr_2O_7^{2-}$		[Mo ₂ O	6SO ₄ 1 ⁴⁻	C)	$[Mo_6O_{19}]^{2-}$	D)	$[Ta_6O_{10}]^{2-}$		
	/	C1201	_,	11.1020	U~ U4]	<i>-,</i>	[-,-00019]	-)	[-400-19]		
7.	Given	below are two	stateme	nts							
		nent I: Zr and			her in n	ature ar	nd their senarat	ion is di	ifficult		
		nent II: They h		_			-				
		y the correct ch					nac contraction	.1			
	Incliff,	y the correct ch	ioice II(in the l	OHOWIII	5					


- A) Statement I is correct and statement II is the correct explanation of statement I
- B) Statement I is correct and statement II is not the correct explanation of statement I
- C) Statement I is correct and statement II is incorrect
- D) Statement I is incorrect and statement II is incorrect

- 8. Which among the following is not a super heavy element?
 - A) $_{105}Db$
- B) $_{106}Sg$
- C) ₁₀₂No
- D) $_{104}Rf$
- 9. The number of isomers possible for the complex $[CoCl_2(NH_3)_2(PPh_3)_2]^+$ is
 - A) 3
- B)
- C) 5
- D) 6
- 10. Which among the following is the splitting pattern of d-orbitals in square planar complexes?

- 11. The colour of MnO_4 ion is due to
 - A) d-d transition
 - B) f-d transition
 - C) Metal to ligand charge transfer
 - D) Ligand to metal charge transfer
- 12. The magnetic moments of $[Fe(H_2O)_6]^{2+}$ and $[Fe(CN)_6]^{3-}$ are respectively
 - A) $1.73 \mu_B$, $4.9 \mu_B$
- B) $3.87 \mu_B$, $1.73 \mu_B$
- C) $4.9 \mu_B$, $1.73 \mu_B$
- D) $4.9 \mu_B, 0$
- 13. The number of metal metal bonds and bridging CO ligands in Co₂ (CO)₈ are respectively
 - A) 1, 2
- B) 2, 1
- C)

0, 3

D) 2

14. Match the hapticity of organic ligands in the following organometallic compounds

<u>Orga</u>	<u>nometallic compound</u>	Hapticity		
a.	$Fe(C_5H_5)_2$	i.	4	
b.	$Cr(C_6H_6)_2$	ii _.	5	
c.	$(C_4H_4)Fe(CO)_3$	iii _.	6	
d.	$U(C_8H_8)_2$	iv.	7	
		v.	8	
A)	a- ii h – i c-iii d- v	B)	a- i	

15.	The catalyst used in the homogeneous hydrogenation of olefins is								
	A)	Ni	B)	$Co_2(CO)_8$	C)	$[Rh(CO)_2I_2]^-$	D)	$[Rh(PPh_3)_3Cl]$	

- 16. The organometallic compound used in the preparation of Ziegler-Natta catalyst is A) $Al(C_2H_5)_3$ B) $Fe(C_5H_5)_2$ D) C) $Rh(CO)H(PPh_3)_3$ $[Ru(BINAP)Br_2]$
- The metal ion which plays the crucial role in transferring information from gene by enabling 17. the protein to recognise and bind to precise sequences of DNA base pairs is Ca^{2+} Mg^{2+} Zn^{2+} A) B) C) K^{+}
- 18. The enzyme that catalyse the reduction of O₂ to water without incorporation of O atoms is Cytochrome c peroxidise Cytochrome c oxidase B) A) C) Carboxypeptidase D) Carbonic anhydrase
- 19. In oxyhaemoglobin, iron is in High spin Fe(II) B) High spin Fe(III) A) C) Low spin Fe(II) Low spin Fe(III) D)
- 20. Carboplatin, a platinum complex, is used as Anti-cancer drug Anti-arthritis drug A) B) Anti-malarial D) Anti-histamine C)
- 21. Which among the following effects is facilitating the following reaction?

$$H_3C$$
 + HCN \longrightarrow H_3C \xrightarrow{CN} OH

A) Inductive effect B) Electromeric effect Mesomeric effect Hyper conjugative effect C) D)

- 22. The increasing order of stability of the following free radicals is
 - i) CH_3 ii) CF_3 iii) CH_2F iv) CHF_2
 - A) i < iii < iv < ii
- B) i < ii < iii < iv
- $C) \qquad i < iii < ii < iv$
- \vec{D}) ii < i < iii < iv
- 23. Which among the following ion is homo aromatic?

- 24. Match the following reactions with the correct intermediates

Reaction

Intermediate

(I)
$$\frac{\text{OH}}{\text{dil. H}_2\text{SO}_4}$$

a) carbene

- b) carbocation

free radical

$$(III) \qquad \qquad h_{V} \qquad \qquad h_{V}$$

(IV)
$$H_2C = CH(CH_2)_4Br$$
 $\xrightarrow{\text{(TMS)}_3SiH}$ CH_3 d) carbanion

- A) (I) b, (II) d, (III) c, (IV) a
- B) (I) b, (II) d, (III) a, (IV) c

c)

- C) (I) d, (II) b, (III) a, (IV) c
- D) (I) b, (II) c, (III) d, (IV) a

25. The major product formed in the following reaction is

A) CH_3

Br

B) CH₃

C) CH₃

 $D) \qquad \qquad Br \qquad Br$

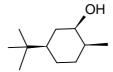
26. Product of the reaction

$$d) \begin{picture}(20,5) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){$$

27. The major product of the reaction

28. Match the following reactions with the respective names

<u>Reaction</u> <u>Name</u>


(III)
$$Cu^+$$
 Cu^+ C Perkin reaction

29. Which among the following structures is/are of (R)-glyceraldehyde?

A) (I) only

- B) (II) and (III) only
- C) (I) and (III) only
- D) (IV) only
- 30. The IUPAC name of the following compound is

- A) (2Z, 4R,6R)- 4-Chloro-6-hydroxy-2-metthylhept-2-enal
- B) (2E, 4S,6R)- 4-Chloro-6-hydroxy-2-metthylhept-2-enal
- C) (2E, 4R,6S)- 4-Chloro-6-hydroxy-2-metthylhept-2-enal
- D) (2Z, 4S,6R)- 4-Chloro-6-hydroxy-2-metthylhept-2-enal
- 31. The most stable conformation of the following molecule is

- A) t-butyl and methyl equatorial, hydroxyl group axial
- B) t-butyl and hydroxyl group axial, methyl equatorial
- C) All equatorial
- D) t-butyl axial, methyl and hydroxyl group equatorial
- 32. Which among the following statements is correct regarding the reaction?

- A) It is a stereospecific reaction and only (I) is formed
- B) It is a stereospecific reaction and only (II) is formed
- C) It is a stereoselective reaction and (I) is the major product
- D) It is a stereoselective reaction and (II) is the major product
- 33. The following photochemical reaction proceeds through

- A) Paterno- Buchi reaction
- B) Norrish Type I reaction
- C) Norrish Type II reaction
- D) Barton reaction

34. The major products X and Y formed in the following photochemical reactions are

$$+$$
 OMe $h_V \rightarrow (X)$

$$+$$
 $\stackrel{CN}{\longrightarrow}$ $\stackrel{h_V}{\longrightarrow}$ (Y)

A)
$$(X) = H$$
 OMe $(Y) = H$ CN

B)
$$(X) = H$$
 $(Y) = H$ $(Y) = H$

C)
$$(X) = H$$
 OMe $(Y) = H$ CN

D)
$$(X) = \bigcup_{H \text{ OMe}} (Y) = \bigcup_{H \text{ H}} (Y)$$

35. The correct statement for the following reaction is

- A) X is formed by thermal conrotatory & Y by photochemical disrotatory ring closure
- B) X is formed by photochemical conrotatory & Y by thermal disrotatory ring closure
- C) X is formed by thermal disrotatory & Y by photochemical conrotatory ring closure
- D) Both X and Y are formed by photochemical disrotatory ring closure.
- 36. The correct statements regarding the reaction

- **I**. It is a [1,7]H shift
- **II**. It is a [1,5]H shift
- III. It occurs by thermal antarafacial H shift
- IV. It occurs by photochemical suprafacial H shift
- A) I and IV only

B) II and III only

C) II and IV only

D) I and III only

37. The structure of alpha pinene is

38. Match the following Structures in column I with the type of compounds in column II

Column I

Column II

i) lipid

d)
$$H_{33}C_{17}OCO - OCOC_{17}H_{33}$$
 $H_{31}C_{16}OCO - OCOC_{17}H_{33}$

iv) Isoflavone

A)
$$a - ii$$
, $b - iii$, $c - iv$, $d - i$

$$a - ii$$
, $b - iv$, $c - i$, $d - iii$

C)
$$a - iv, b - iii, c - i, d - ii$$

$$a - iii$$
, $b - iv$, $c - ii$, $d - i$

39. The cofactor which is responsible for transfer of CO_2 in carboxylase enzymes is

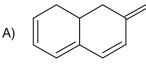
B)

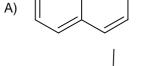
D)

- A) Vitamin B_{12} B)
- Vitamin C
- C) Biotin
- D) Vitamin E
- 40. Which among the following is the wrong statement regarding the base pairs in nucleic acids?
 - A) Adenine is paired by thymine in DNA
 - B) Cytosine is paired by guanine in RNA
 - C) Guanine is paired by cytosine in DNA
 - D) Thymine is paired by adenine in RNA

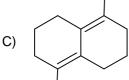
41.									
	c–axis A)	at unit distance 100		10	C)	001	D)	010	
42.		has an interpend ns are respective		nple cubic l	attice. T	he co-ordination	on numb	per of Cs ⁺ and	
	A)	8 and 8		and 6	C)	4 and 4	D)	8 and 4	
43.	The ty A)	pe of liquid cry Nematic		to measure Cholesteric	skin ter C)	mperature is Smectic	D)	Lyotropic	
44.	Which A) B) C) D)	Thermal cond	luctivity is luctivity is luctivity is	directly prodirectly prodirectly pro	portion portion portion	thermal conduct al to its average al to molar con al to heat capac anal to mean fre	e veloci centrati city (Cv	ty on	
45.		a among the following among the following \mathbf{II}) of				aneous process IV) dH _{S,P}		$\mathbf{V}) dG_{T,P} < 0$	
	A) C)	I and III only I, II, III and Γ	V only	B) D)	I, II, I All of	II and V only these			
46.	Match	the following	relations ii	n column I v	with col	umn II			
	C	olumn I			Colum	n II			
	a)	$\left(\frac{\partial T}{\partial P}\right)_{S}$	$= \left(\frac{\partial V}{\partial S}\right)_P$		i) Jou	ile Thomson co	efficier	ıt	
	b)	$\left(\frac{\partial}{\partial T}\frac{\Delta G}{T}\right)_{P}$	$= -\frac{\Delta H}{T^2}$		ii) Maxwell relation				
	c)	$\langle \sigma P \rangle_H$	= μ		iii) Dul	nem- Margules	equatio	n	
	d)	$\left(\frac{dlnP_A}{dlnX_A}\right)_{T,P}$	$= \left(\frac{dlnP_B}{dlnX_B}\right)$	T,P	iv) Gil	obs-Helmholtz	equatio	n	
	A) C)	a - ii, $b - iv$, $a - i$, $b - ii$, c				b - i, c - iv, d b - i, c - ii, d			
47.		container are	, ,	•		ent when calciu $c = 2$, $p = 3$		onate is heated in a $c = 1$, $p = 3$	
	,	-		-		-		N	
48.	The ex	xpression for pr	ressure in t				on Q = $\frac{1}{l}$	v! is	
	A)	– kTlnQ – kT	$(1-\ln N_A)$	B)	$kT\left(\frac{\partial l}{\partial l}\right)$	$\left(\frac{nQ}{V}\right)_T$			
	C)	$kT^2 \left(\frac{\partial lnQ}{\partial T}\right)_{P,N}$	I	D)	kT^{2}	$\left(\frac{\partial lnQ}{\partial T}\right)_{V,N}$			

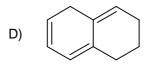
49.	Thermal decomposition of compound A is a first order reaction. If 75% of A is decomposed in 50 min, how long will it take for 94% of the compound to decompose?									
	A) 90 min B) 75 min C) 125 min D) 100 min									
50.	The ionic strength of 0.2 molal FeCl ₃ solution is									
	A) 0.6 B) 0.8 C) 1.0 D) 1.2									
51.	The first successful explanation of unimolecular reactions was given by the Scientist A) Arrhenius B) Eyring C) Lindmann D) Gottingen									
52.	The temperature dependence of the rate constant of a second-order reaction is given by log $k=-3140/T+11$ The Arrhenius parameters 'A' and 'Ea' for the reaction are respectively									
	A) $1 \times 10^{11} \text{s}^{-1}$, 60 kJmol^{-1}									
	B) $1 \times 10^{11} \text{s}^{-1}$, - 60 kJmol ⁻¹									
	C) $2 \times 10^{11} \text{ s}^{-1}, 26 \text{ kJmol}^{-1}$									
	D) $e^{11}s^{-1}$, -26 kJmol ⁻¹									
53.	Match the following equations in Column I with the respective names in Column II Column I Column II									
	a) $\Delta_{solv}G^{\circ} = \frac{z_i^2 e^2 N_A}{8\pi\epsilon_0 r_1} \left(1 - \frac{1}{\epsilon_r}\right)$ i) Debye- Huckel limiting law									
	b) $\log \gamma_+ = - z_+ z A I^{\frac{1}{2}}$ ii) Onsager equation									
	b) $\log \gamma_{\pm} = - z_{+}z_{-} AI^{2}$									
	c) $\Lambda = \Lambda_0 - (A + B\Lambda_0)\sqrt{c}$ iii) Born equation									
	$\begin{array}{lll} A) & a-ii,b-i,c-ii\\ C) & a-iii,b-i,c-ii \end{array} \qquad \begin{array}{lll} B) & a-iii,b-ii,c-i\\ D) & a-i,b-iii,c-ii \end{array}$									
54.	The Nernst equation $E = E^{\circ} - \frac{RT}{nF} \ln Q$ indicates that the equilibrium constant K will be equal to Q when									
	A) $E = E^{\circ}$ B) $\frac{RT}{nF} = 1$ C) $E^{\circ} = 1$ D) $E = zero$									
55.	The values of emf of the following three galvanic cells I. $Zn \mid Zn^{2+}(a=1) \parallel Cu^{2+}(a=1) \mid Cu$ II. $Zn \mid Zn^{2+}(a=0.1) \parallel Cu^{2+}(a=1) \mid Cu$ III. $Zn \mid Zn^{2+}(a=0.1) \parallel Cu^{2+}(a=0.1) \mid Cu$ are represented by E_1 , E_2 , and E_3 . Then which of the following statement is true?									
	A) $E_1 > E_2 > E_3$ B) $E_3 > E_2 > E_1$ C) $E_3 > E_1 > E_2$ D) $E_2 > E_1 > E_3$									

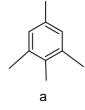

56.		enthalpy of for 37 kJ mol ⁻¹ res 93%						X are -285 kJ mo ell is 60%	l ⁻¹	
57.	Whice A) B) C) D)	When $n = 1$, When $n = 2$,	BET iso BET iso BET iso	otherm reduce otherm reduce otherm reduce	s to Freus to Langes to Lan	ndlich isothern gmuir isothern gmuir isothern indlich isother	n n			
58.	Whic A) C)	h of the follow Solid disper Liquid dispe	sed in li	quid B)		dispersed in g				
59.	Emiss A)	sion of a secor ESCA	nd electr B)	on after high Auger effe		diation has ex SEM	pelled ar D)	n electron, is cal PES	led	
60.	 Which among the following statements is not true? A) Enzymes are essentially proteins responsible for reactions in living organism B) The catalyst changes the rates of both forward and backward reactions C) A catalyst lowers the free energy of activation of the reaction D) A catalyst alters the value of equilibrium constant of the reaction 									
61.	Whic	h of the follow	ving is a	n eigen functi	on of the	operator \hat{P}_x ?				
01.	A)	e^{ikx}	B)	xe^{ikx}	C)	$x^2 + 2x$	D)	e^{ikx^2}		
62.	The e		ticle in a	a 3D cubic bo	x of side	length L is 14	$h^2/8mL^2$	The degenerac	y of	
	A)	4	B)	2	C)	6	D)	3		
63.		ground term sy								
	A)	$^4F_{rac{3}{2}}$	B)	$^4D_{rac{3}{2}}$	C)	$^4F_{rac{9}{2}}$	D)	$^4D_{rac{1}{2}}$		
64.	According to variation principle, the energy E evaluated using a trial wave function will be related to the ground state energy									
	A)	$E \leq E_0$	B)	$E = E_0$	C)	$E \ge E_0$	D)	$E \neq E_0$		
65.	Whic	Which among the following statements regarding CO are correct?								
	I.					n bonding and				
	II.					_	d is locat	ed on C atom.		
	III. IV.		egative e	doubly degenerated dipole		_	m even t	hough it is less		
	A)	I and III onl	V	B)	I, III	and IV only				
	C)	II III and IV	•	D)		nd IV only				

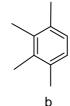

66.		on the following: Dlumn I-Hybri		Colu i) ii) iii) iv)	SF ₄ XeF	$\left[\frac{CN_4}{CN_4}\right]^{2-1}$				
	A) C)	a - iv, $b - iii$, $a - iii$, $b - iv$,			B) D)		b - iii, $c - iv$, b - i, $c - ii$, d			
67.	The the A)	nird Hermite po 1	olynomia B)	ıl is 4ξ²		C)	2ξ	D)	$4\xi^{2}$ -2	
68.		$\pm \beta$ twice. The						D)	e given by $\alpha \pm 2\beta$ 4β	
69.	The p	oint group of 1 C _{3V}	, 3, 5- tri B)	ibromol C _{3h}	benzen	e is C)	D_{3d}	D)	$\mathrm{D}_{3\mathrm{h}}$	
70.	Moleo A)	cules falling in C_n, C_s, C_{nv}					sess a permane C_s , C_{nh} , C_{nv}			
71.	Which I. II. III. IV.	The number of symmetry op In a given repsame class ar The irreducib dimension.	All point groups contain a totally symmetric one dimensional irreducible							
	A) C)	I only I, II and IV o			B) D)		IV only III only			
72.	The p A)	roduct of $\sigma_{xy} > \sigma_{yz}$	σ_{xz} is e B)	equal to $C_{2(x)}$	•	C)	$C_{2(y)}$	D)	$C_{2(z)}$	
73.		ich among the following molecules is/are both microwave and IR inactive? 2, H ₂ , HCl, CH ₄ , SF ₆ H ₂ , CH ₄ & SF ₆ H ₂ , HCl D) H ₂						ctive?		
74.		irst four vibration of the cm ⁻¹ and 7597 of 2290 cm ⁻¹ and 2230 cm ⁻¹ and	cm ⁻¹ . The d 4381 c	e funda m ⁻¹		and firs		l appear	respectively at:	

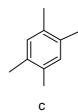
- 75. g-value of odd electron species is determined by
 - Rotational spectra A)
- Raman spectra
- C) NMR spectra
- D) ESR spectra
- 76. Fine structure in ESR spectra is observed due to
 - A) Interaction of electron spin with nuclear spin
 - Electron spin spin coupling in species having more than one electron B)
 - C) Nuclear spin – spin coupling
 - D) Both A and C
- 77. In the IR spectrum, carbonyl absorption band for the following compound appears at




- 1810 cm⁻¹ A)
- 1770 cm⁻¹ B)
- C) 1730 cm⁻¹
- D) 1690 cm⁻¹
- Which among the following molecules show maximum value for λ_{max} in UV region 78.







The number of ¹³C NMR signals obtained in the following three compounds are: 79.

- a 3, b 5, c 4A)
- a 5, b 4, c 3
- a 7, b 5, c 4
- a 7, b 5, c 3D)
- The recoil energy of a nucleus of mass m emitting a gamma ray of energy $E\gamma$ is given by 80.

- $R = \frac{E_{\gamma}^2}{2mc^2}$ B) $R = \frac{E_{\gamma}}{2mc^2}$ C) $R = \frac{E_{\gamma}^2}{2mc}$ D) $R = \frac{E_{\gamma}}{2mc}$

81.	Which among the following is false with respect to instrument errors?											
	A)	They may arise due to the us	se of glas	ssware	at a temperatu	ire that o	liffers significantly					
		from the calibration tempera	ature.									
	B)	They may emerge as the vol	ltage of a	a batter	y-operated po	wer supp	oly of an instrument					
		decreases with use.										
	C)	The non-ideal chemical or p	hysical b	oehavio	our of the reag	ents and	reactions on which					
		an analysis is based often introduces these errors.										
	D)	Pipettes and volumetric flasks may deliver volumes slightly different from those										
		indicated by their graduation	ns.									
82.	If the a	rea beneath a Gaussian curve	e for a no	nulatio	on is 68 3% it	corresp	onds to area within					
02.	A)	one standard deviation $(\pm \sigma)$				corresp	onds to area within					
	B)	two standard deviation ($\pm 2\sigma$) deviation of the mean μ .										
	C)	three standard deviation ($\pm 3\sigma$) deviation of the mean μ .										
	D)	five standard deviation ($\pm 5\sigma$) deviation of the mean μ .										
	2)	Tive Stationard deviation (=50	, 40 (140)		iic iiicaii pi.							
83.		among the following is not u										
	A)	Calmagite	B)		hrome black T	ı						
	C)	Murexide	D)	Brom	othymol blue							
84.	Which	among the following is/are i	ncorrect	to get	precipitates in	gravime	etric analysis?					
	I.	Precipitation is to be carried out in hot solutions.										
	II.	Precipitation is to be done in				lding the	e reagent slowly.					
	III.	Large excess of reagent show			-	_	_					
	IV.	Masking agents are needed to					-					
	A >	I II and III and	D)	TT	III1							
	A)	I, II and III only	B)		III only							
	C)	II and IV only	D)	II only	у							
85.	The distribution coefficient of an alkaloid between chloroform and water is 20.0. If a 100 mL											
	solutio	olution containing 1g of alkaloid was extracted with two successive 50 mL quantities of										
	chlorof	form, the amount of alkaloid	remainir	ng unex	tracted is:							
	A)	0.0083 g B) 0.016	56 g	C)	0.05 g	D)	0.00083 g					
86.	The ef	fectiveness of a column in ch	romatog	raphic	separation is r	neasured	l by					
00.	A)	Plate height	B)	-	of the column							
	C)	Number of theoretical plates	,	_	ion time							
	<i>C)</i>	Transcer of theoretical places	, 2,	1010111								
87.		ity product of CaSO ₄ , CaCO										
		$^{-9}$, 6.5x 10^{-6} and 1.57x 10^{-3} . W		igent w	ould you chos	e to esti	mate Ca ²⁺					
	from it	s aqueous solution gravimetr	rically?									
	A)	Sodium sulphate solution		B)	Sodium carb	onate so	olution					
	C)	Sodium hydroxide solution		D)	Sodium chlo	ride solı	ution					
88.	DNA c	equencing is usually done by	7									
00.	A)	HPLC	B)	GC- N	ΛS							
	C)	Gel – electrophoresis	D)		kchange chron	natogran	hv					
	<i>C)</i>	Get – electrophotesis	D)	1011 67	Change childh	miograp	11 y					

89.	When a monochromatic beam of light of wavelength 630 nm is passed through a sample solution in cell 1cm thick the transmittance is 50%. If the same beam passes through the sample solution in a cell of 2 cm thickness, the intensity of transmitted light will be: A) 0.0 B) 0.25 C) 0.3 D) 0.5							
90.	Which A) C)	among th Dissolved pH	_	factors affect J B) D)	Tem	orimetric anal perature ne above	ysis?	
91.	Which I. II. A) C)	h among the following is/are true with respect to flame atomic emission spectroscop A high concentration of calcium in a sample can produce a band emission from Ca(OH) ₂ causing blank interference The presence of phosphate in a sample will not alter the atomic concentration of calcium and will not influence the volatilization of the sample Ionisation suppressants containing elements such as potassium or caesium can eliminate ionization interference I, II and III only B) I and III only I and III only D) I only						emission from oncentration of
92.	method					-		
	A)	AAS	B)	Turbidimetry	/ C)	Nephelome	try D)	Both B and C
93.	_	s electrode ues in the		d to measure th	ne pH v	alue of solution	ons havin	g
	A)	0 to 14	B)	-1 to 12	C)	0 to 12	D)	- 1 to 14
94.	caused	to flow be on of time Cyclic vo	etween two		potent eferenc Amp	ial of one elec	trode, is known	onstant current, is monitored as a as
95.				curves represe Cl solution?	ent the o	conductometri	c precipi	tation titration of
	$ \begin{array}{c c} \uparrow \\ \hline \\ \\ \hline $							

C)

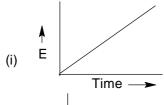
III

D)

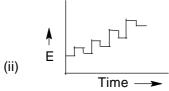
IV

A)

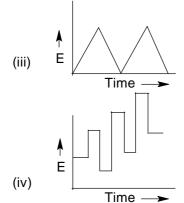
I

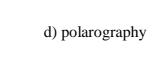

B)

II


96. Match the following graphs with the corresponding type of voltammetry:

Column I-Wave forms


Column II-Type of Voltammetry


a) cyclic voltammetry

b) Square wave voltammetry

c) Differential pulse polarography

- A) (i)-d, (ii)-c, (iii)-a, (iv)-b
- (i) b, (ii) c, (iii) d, (iv) a
- C) (i)-d, (ii) a, (iii)-c, (iv) -b D)
- (i) d, (ii) c, (iii) b, (iv) a
- 97. In thermometric titrations, during each portion of the titrant added, the property measured is A) Free energy B) Enthalpy C) Temperature D) Heat change

B)

- 98. Glass transition temperature of a substance can be determined by
 - A) TG
- B) DTA
- C) DSC
- D) All the above
- 99. In neutron activation analysis the induced radioactivity of the sample is monitored by measuring
 - A) α emission
- B) β –emission
- C) positron emission
- D) γ emission
- 100. Match the following radiation quantities and units:

Column I

Column II

a) rem

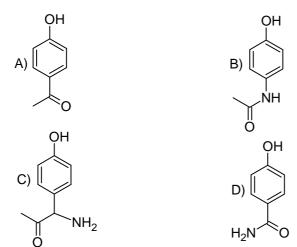
 $\frac{}{(i) \ 3.7 \times 10^{10}} dps$

b) sievert

(ii) 100 erg/g

c) curie

(iii) 1dps


d) becquerel

- (iv) 1J/kg
- A) a ii, b iii, c i, d iv
- B) a ii, b iv, c i, d iii
- C) a iii, b ii, c i, d iv
- D) a iv, b iii, c ii, d i

101.	Which among the following reactions is least atom economic in nature?										
	A)	Wittig Reaction	B)		Alder Reaction						
	C)	Photo Fries Rearrangement	D)	Claiser	n Rearrangement						
102.	Which of the following one is not an ozone layer depleting substance?										
	A)	Freon		B)	Teflon						
	C)	Methyl bromide		D)	Carbon tetrachloride						
103.	Which is true with respect to a Phase Transfer Catalyst (PTC)?										
	A)	A PTC has an appropriate hy	ydrophil	lic/lipop	shilic balance to enable it to have nich is the most common system						
	B)		h water	molecul	y, one reason being that anions in the les associated, making them highly y.						
	C) Since the organic layer is mixed with the water-soluble contaminants, it cannot be simply decanted off and thus product separation is often difficult, resulting in large amount of waste.										
	D)	D) Because of higher activation energy, the reactions using PTC can be run only at higher temperatures, which may increase by-product formation.									
104.	Nitrile hydratase is a biocatalyst used in										
	A)	the enantioselective reduction of ketones									
	B)	anaerobic glycerol metabolism									
	C)	thiamine metabolism									
	D) the industrial production of acrylamide from acrylonitrile										
105.	The characterization of nanomaterials are done by										
	A)	· ·									
	B)	Atomic force microscopy									
	C)	Scanning probe microscopy									
	D)	All the above									
106.	The m	nost common stabilizing mater	ial used	l for gol	d nanoparticles is						
	A)	Long chain thio alcohols	B)	Fatty a	acids						
	C)	Nitro alkanes	D)	None o	of the above						
107.	Quantum cascade (QC) lasers are constructed from which of the following materials										
	I)	GaAs, II) AlAs		III)	ZnS IV) InAs						
	A)	I and III only	B)	III onl	-						
	C)	I, II and IV only	D)	All of	these						
108.			nposite	materia	ls the type of bond between organic and						
	_	nic phases is/are:									
	A)	Ionic									
	B)	Covalent									
	C)	Weak electrostatic interaction	ns								
	D)	All the above									

109.	The main reaction cycle of ozone formation in the middle atmosphere is called									
	A)	Calvin cycle		B)	Chap	man cycle				
	C)	Schonbein cycle		D)	Rowl	and cycle				
110.111.	A) C) The an	silica and magnesilead tetra ethyl nount of oxygen ne	ium oxide eded (i.e.,	control of car exhaust emissions are made up of le B) platinum, palladium and rhodium D) manganese pentacarbonyl dimer a., demanded) by aerobic biological organisms to break a given water sample at certain temperature over a specific						
		organic material pro eriod is known as BOD B)	esent in a g	given wa	ater san	nple at certai	n tempera D)	ture over a specific Both A and B		
112.	Δc the	acidity of soil incre	eases the f	ertility o	of soil a	decreases due	e to			
112.	A)	Deficiency of pota		B)		iency of calc				
C) Aluminium excess D) All the above										
	C)	Alummum excess	3	D)	An ui	ie above				
113.	Which	of the following po	olymers in	volve ci	oce lin	kages?				
113.	A)	B)		nized rubber	•					
	C)	Bakelite Nylon 6		D)		A and B	L			
	C)	Nyion o		D)	Dom	A and D				
114.		the following poly		method Exam		the respectiv	e example	es:		
			_							
	a) Ra	ndical addition polymerization		i) polya	acrylon	itrile				
	b) Ca	ationic addition polymerization		ii) polythene						
	c) Ar	nionic addition polymerization		iii) Nylon 66						
	d) Co	ondensation		iv) butyl rubber						
	u) C	polymerization		iv) butyl lubbel						
		porymerization								
	A)	a - ii, $b - iii$, $c - i$,	d iv	D)	0 ii	b - iv, $c - i$,	a :::			
	C)	a = 11, b = 11, c = 1, a = 111, b = 1, c = 10				b - iv, $c - i$, $b - iii$, $c - i$				
	C)	a - III, b - I, c - Iv	, u – 11	D)	a – 1v	, b - m, c - n	1, u – 1			
115.	The ele	ectrical conductanc SrCl ₂ B)	e of polya	•	can be	e increased by Copper ox		t with Zinc oxide		
	/				-,	- PF	/			
116.	Ziegle: A)	r – Natta catalytic Isotactic B)		ation of otactic		ne gives poly Atactic	propene w D)	with stereochemistry Both B and C		
117.	Paraqu	at poisoning cause	s:							
	A)	Renal failure		B)	Cardi	ac failure				
	C)	Respiratory failure	e	D)	Multi	ple organ fai	lure			

118. The correct structure of paracetamol is:

- 119. The source of arsenic contamination in water is:
 - A) Industrial waste
- B) Fertilizers

C)

- C) Phosphate rocks
- D) All of the above
- 120. The sedative drug which is a urea derivative is
 - A) Morphine
- B) Equanil
- Phenobarbital
- D) Heroin